CLASS: B. Sc (Information technology)		Semester – II	
SUBJECT: Microprocessor and microcontrollers (USIT203)			
Periods per week	Lectures – 5	3 Credits	

Unit –	Logic Devices: Tristate devices, buffers, encoder, decoder, latches.	8 Lect.
I	Types of memories, memory organization, concept of control lines such	
	as read/write, chip enable.	
Unit-	Introduction to 8085 microprocessor: - Organization of Microprocessor	8 Lect.
II	based system, 8085 µp Architecture, Concept of Address line and	
	Memory interfacing, Address Decoding and Memory Interfacing,	
Unit-	8085 Programming Model, Instruction Classification, Instruction	8 Lect.
III	Format, 8085 Instruction Set	
Unit-	Introduction to Modern day Computer Systems: - Organization and	8 Lect.
IV	Architecture, Structure and function.	
	System Buses: - Computer Components, Computer function, PCI: -	
	Features of PCI bus, Why PCI bus is needed? Concept of PCI	
	Arbitration.	
	Internal Memory: - Concept of Cache Memory, Methods of Cache	
	Mapping, Concept and need for Cache coherency. External Memory: -	
	RAID.	
Unit-	The 8051 Microcontroller:	8 Lect.
V	Introduction and overview of 8051 family, 8051 Assembly Language	
	Programming, Jumps, Loops and call instructions.	_
Unit-	8051 I/O port programming, Addressing Modes, Arithmetic and Logical	8 Lect.
VI	instructions.	

References

William Stallings, "Computer Organisation and Architecture" (4th Edition) - PHI, 1998.

Andrew C. Tanenbaum, "Structured Computer Organisation" (3rd Edition) -, PHI.

Computer System Architecture - M. Morris Memo, PHI, 1998.

John P Hayes, "Computer Architecture and Organisation" - McGraw Hill, 1998.

Digital Computer Fundamentals, Malvino

Microprocessor Architecture and Programming and Applications with the 8085, R.S. Gaonkar, PRI (3rd Edition)

Digital Computer Fundamentals, Thomas C Bartee, TMG

The 8051 Microcontroller and Embedded systems by M. A. Mazidi, J. G. Mazidi and R. D. McKinlay, Pearson Education.

Term Work for USIT203

- i) Assignments: Should contain at least 2 assignments covering the Syllabus.
- ii) Class Tests: One. Also Known as Unit Test or In-Semester Examinations
- iii) Tutorial: Minimum Three tutorials covering the syllabus

Practicals (USIT2P3):

Journal Practical

3 Lectures per Week (1 Credit)

8085 programs for

- 1. Simple 8-bit and 16-bit addition and subtraction
- 2. Transfer a block of data from one location to another.
- 3. Find the largest/smallest of the numbers stored at one location.
- 4. Addition of 10 numbers.
- 5. Multiplication of 8-bit and 16-bit numbers.
- 6. Sorting of numbers.
- 7. BCD addition
- 8. Division
- 9. Find GCD and LCM of two numbers
- 10. Swapping a block of data

8051 programs for:

- 1. To search a number from a given set of numbers. The end of the data is indicated by 00.
- 2. Finding the average of signed numbers.
- 3. Multiplication of signed numbers.
- 4. Convert the BCD 0111 0101 number to two binary numbers and transfer this number to registers.
- 5. To find y where $y = x^2 + 2x + 5$ and x is between 0 and 9.
- 6. Write a program to show the use of the BIT directive.
- 7. Write a program to find the number of zeros in register R2
- 8. Write a program to check if the accumulator is divisible by 8.
- 9. To check whether a character string is a palindrome or not.
- 10. To check the number is prime or not.